Three levels of description (David Marr, 1982)

SCS epos

Computational

Why do things work the way they do? What is the goal of the computation? What are the unifying principles?

Algorthmic

What representations can implement such computations? How does the choice of representations determine the algorithm? Arithmetic: a + b = c

00001000110101+ 00001000010100= 00010001001001

Implementational

How can such a system be built in hardware? How can neurons carry out the computations?

Three levels of description (David Marr, 1982)

Computational

Why do things work the way they do? What is the goal of the computation? What are the unifying principles?

Algorthmic

What representations can implement such computations? How does the choice of representations determine the algorithm?

Implementational

How can such a system be built in hardware? How can neurons carry out the computations?

Three levels of description (David Marr, 1982)

Computational

Why do things work the way they do? What is the goal of the computation? What are the unifying principles?

Algorthmic

What representations can implement such computations? How does the choice of representations determine the algorithm?

Implementational

How can such a system be built in hardware? How can neurons carry out the computations?

Bellman (1960)

Temporal-difference-error algorithm

 $\begin{array}{c|c} \textbf{while episode not terminated do} \\ A \leftarrow \text{action given by } \pi \\ \text{Take action A, observe } r_t, S_{t+1} \\ \delta_t = r_t + \gamma V(S_{t+1}) - V(S_t) \\ V(S_t) \leftarrow V(S_t) + \alpha \delta_t \\ S_t \leftarrow S_{t+1} \\ \textbf{end} \end{array}$

Schultz, Dayan, Montague (1997)

Sutton & Barto (1998)