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Interactive Reinforcement Learning with
Bayesian Fusion of Multimodal Advice

Susanne Trick1,3, Franziska Herbert1,2, Constantin A. Rothkopf1,3,4, Dorothea Koert1,2

Abstract—Interactive Reinforcement Learning (IRL) has
shown promising results in decreasing the learning times of
Reinforcement Learning algorithms by incorporating human
feedback and advice. In particular, the integration of multimodal
feedback channels such as speech and gestures into IRL systems
can enable more versatile and natural interaction of everyday
users. In this paper, we propose a novel approach to integrate
human advice from multiple modalities into IRL algorithms. For
each advice modality we assume an individual base classifier
that outputs a categorical probability distribution and fuse these
distributions using the Bayesian fusion method Independent
Opinion Pool. While existing approaches rely on heuristic fusion,
our Bayesian approach is theoretically founded and fully exploits
the uncertainty represented in the distributions. Experimental
evaluations in a simulated grid world scenario and on a real-
world human-robot interaction task with a 7-DoF robot arm show
that our method clearly outperforms the closest related approach
for multimodal IRL. In particular, our novel approach is more
robust against misclassifications of the modalities’ individual base
classifiers.

Index Terms—Human Factors and Human-in-the-Loop; Multi-
Modal Perception for HRI; Reinforcement Learning

I. INTRODUCTION

CLASSICAL industrial robots are typically designed to
perform very specific and mostly repetitive tasks. In

contrast, future assistive robots, which are intended to support
humans in their daily lives, will be challenged by a multitude
of different tasks. Since usually not all of these tasks may be
known explicitly beforehand, a key component for such robots
is the ability for self-improvement at runtime and adaptation
to human preferences and new situations at hand.

Even though Reinforcement Learning (RL) [1], [2] offers
a powerful methodology for robots to learn from direct in-
teraction with their environment, in many practical robotic
applications large state and action spaces as well as costly
sample collection prevent the use of RL algorithms. This is
where the novel research field of interactive RL (IRL) [3],
[4] aims to improve learning speed and convergence of RL
algorithms by incorporating human feedback [4] or advice [5]
into the learning process.
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Fig. 1: We propose Multimodal IOP-Based Advice for Interac-
tive Reinforcement Learning (MIA-IRL), using the Bayesian
method Independent Opinion Pool (IOP) to combine the output
distributions of the single modalities’ base classifiers mi. From
the fused distribution we sample an estimated human action
advice âH to execute on the robot. When no human advice is
given we use the action aRL suggested by the base policy of
our RL-Module.

To facilitate a beneficial interaction of everyday users with
such IRL systems it is particularly important to enable ways
for more natural and intuitive communication of human advice
during the learning process [6]. Since humans are used to
teaching other humans using natural cues such as speech,
gestures, body language, gaze, or facial expressions [7], it is a
central question how to best integrate such natural interaction
channels into IRL algorithms. In particular, exploiting all
available multimodal data can in general increase a decision’s
accuracy and decrease its uncertainty, which we showed in a
previous work on human intention recognition [8].

Accordingly, Cruz et al. [9] introduced an IRL approach
(termed C-IRL hereafter) which allows humans to give advice
using the modalities speech and gestures. For C-IRL the
authors trained an individual probabilistic classifier for each
of the two advice modalities and then fused the resulting
output distributions. The used fusion method reduces the
decision’s uncertainty if both modalities’ classifiers detect non-
conflicting advice and increases the uncertainty otherwise.

However, C-IRL only considers the confidence values of
the predicted most likely class label and only considers prob-
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abilities above a certain threshold, thereby discarding valuable
information of the single base classifiers’ distributions. Addi-
tionally, in C-IRL the computation of the fused confidences is
not theoretically founded but based on a heuristic tailored to
exactly two modalities, and it is not discussed how to extend
this computation to more modalities.

To overcome these limitations, the main contribution of
this work is a new multimodal IRL algorithm that uses
the Bayesian fusion rule Independent Opinion Pool (IOP)
[10], [11] for combining the modalities’ classifiers’ out-
put distributions (Fig. 1). As our fusion method combines
individual classifiers’ output distributions Bayes optimally,
it reduces uncertainty correctly. Additionally, the proposed
method allows straightforward generalization to more than
two modalities, which is not clear in C-IRL. Because our
method takes advantage of all available information of the
base classifiers’ distributions and computes the Bayes optimal
uncertainty in the fused distribution, the action selection can be
done probabilistically instead of just executing the most likely
action. We evaluate our method in direct comparison to C-IRL
in a simulated grid world scenario and on a real-world human-
robot interaction (HRI) task, in which human participants teach
a 7-DoF robot arm. The experimental evaluations show that
our method clearly outperforms C-IRL, particularly in the case
of partially wrong outputs of the modalities’ base classifiers.
Thus, we show that Bayesian fusion of modalities increases
the robustness of multimodal IRL.

The rest of the paper is structured as follows. In Section II
we discuss related work. Section III introduces our novel IRL
approach using Bayesian fusion of multiple input modalities.
In Section IV we present the experimental evaluation on
theoretical corner cases, in a simulated grid world, and in a
real HRI scenario. Finally, we summarize our findings and
discuss future research directions in Section V.

II. RELATED WORK

Traditionally, Interactive Reinforcement Learning allows a
human trainer to give feedback on the action a robot just
performed [4], [12], [13]. In contrast to this feedback-driven
approach, humans also try to guide the robot on future actions
by giving advice [3]. Accordingly, several IRL approaches
were proposed that include human advice instead of or in addi-
tion to feedback [5], [14]–[18]. However, in many approaches
the human advisors are not able to communicate their advice
over natural interaction channels. In [15] the human teacher
needs to use a specific programming language to interact with
the learning agent. [17] proposed a computer mouse as input
device for human advice, while [18] instead uses a remote
control. [16] chose a graphical user interface provided on a
tablet computer as input modality for advice.

More intuitive modalities for interacting with the learning
agent were proposed by [14] and [5], who used speech as
input source, or [19] and [20], who used facial feedback.
However, humans use multiple modalities to express their
intentions [21] and also their advice [9]. Accordingly, several
approaches exploit multimodal input data for IRL [9], [22]–
[26]. In order to teach an empathic chess partner for children,

[22] combine human facial features with task-related features,
e.g. if the human is winning or losing. The modalities are fused
at the feature level, which however impedes generalization by
exchanging or adding modalities.

In contrast, [23] propose combining the data from depth
and grayscale images for a robot to learn social behavior. For
both modalities, two individual Q-functions are learned, which
are averaged for fusion. [24] and [25] combine facial and
audio features in order to learn how to entertain people. The
probability for laughing is computed individually from visual
and audio cues, and the resulting probabilities are averaged
for fusion. While these approaches can be straightforwardly
generalized by exchanging the modalities or their respective
classifiers, or by adding additional modalities, by averaging
individual modalities’ results, they cannot account for the un-
certainty of the individual modalities’ classifiers. For instance,
a less certain modality has the same impact on the fused result
as a more certain one and a decision’s uncertainty cannot be
reduced through fusion.

Cruz et al. [9] also use multimodal input channels for IRL,
however, they explicitly consider the individual modalities’
uncertainties. In their framework C-IRL, a human teacher can
give advice using the two modalities speech and gestures. For
each modality a separate probabilistic classifier was trained,
which outputs the predicted label of the detected advice and
a corresponding confidence value. The individual classifiers’
outputs are combined by a heuristic fusion rule that chooses
the label with the higher confidence value if the classifiers are
conflicting. Furthermore, they compute a fused confidence to
decrease a decision’s uncertainty in case both classifiers are
non-conflicting and increase it otherwise.

Although this seems to be a reasonable fusion behavior,
[9] do not provide any mathematical foundation for their
fusion rule, it is not sufficiently motivated why one should
use exactly this function for updating the fused confidence.
Moreover, their fusion discards valuable information by only
considering the confidence values of the most likely classes
instead of entire probability distributions and by not utilizing
probabilities below a manually set threshold. Additionally,
their fusion method, in particular their function for updating
the fused confidence, is explicitly designed for fusing two
modalities and does not straightforwardly transfer to more
modalities.

In contrast to [9], we propose to use a Bayesian fusion
approach. Bayesian inference was already used for inferring
reward functions in inverse reinforcement learning from suc-
cessive feedback [27], however not for fusing multimodal
action advice for IRL. Here, we propose to use the Bayesian
fusion method Independent Opinion Pool (IOP) [10], [11].
IOP provides uncertainty reduction for non-conflicting output
distributions, is theoretically founded on Bayes’ rule, exploits
all classifier information by considering entire probability
distributions, allows to sample from the fused distribution
for action selection, and is applicable to an arbitrary number
of additional modalities. IOP has already been successfully
applied for multimodal human intention recognition [8], and
in this paper we leverage its advantages for multimodal IRL.
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III. MULTIMODAL IOP-BASED ADVICE FOR INTERACTIVE
REINFORCEMENT LEARNING

In this work, we propose a new approach for Interac-
tive Reinforcement Learning with multiple input modalities.
Specifically, our novel method Multimodal IOP-Based Advice
for Interactive Reinforcement Learning (MIA-IRL) uses the
Bayesian fusion method Independent Opinion Pool (IOP)
[10], [11] to incorporate multiple probabilistic base classifiers’
distributions over human advice into an RL algorithm. In this
section, we explain the main components of our approach,
which are also illustrated in Fig. 1. We describe the agent’s
interaction with its environment as a Markov Decision Process
(MDP) and as a core deploy a standard RL algorithm, such
as Q-Learning, in our RL Module (Section III-A). We then
assume a human teacher that wants to communicate intended
action advice aH to suggest to the robot which action should
be performed next. The human’s action advice is recognized
using multiple modalities. For each modality mi an individual
base classifier is trained, which is assumed to output a categor-
ical distribution over all possible actions P (aH |mi) (Section
III-B). Subsequently, the categorical distributions returned by
all D base classifiers are fused within the Fusion Module using
IOP (Section III-C). By sampling from the fused categorical
distribution P (aH |m1, . . . ,mD) we obtain an estimate for
the action proposed by the human âH , which the RL agent
then executes (Section III-D). If no advice is given, the
action proposed by the RL Module aRL is chosen (Section
III-A). For the experiments in this paper, human advice was
provided in the first N episodes of learning. However, MIA-
IRL could straightforwardly also incorporate distributed advice
if an advisor is available over the complete learning process.
Our MIA-IRL approach is also summarized in Algorithm 1.

A. RL Module

The learning agent’s interaction with its environment is
represented as a Markov Decision Process (MDP). Thus, in a
state s it takes an action a, gets a reward r, and transits to the
next state s′. The agent’s goal is to learn an optimal policy
π(s) in order to receive the expected maximum discounted
total future reward. For the experiments in this paper, we used
tabular Q-learning, which however could be replaced by other
RL algorithms for different applications. The Q-function is
updated according to

Q(s, a)← Q(s, a)+α(s)(r+γmax
a′

Q(s′, a′)−Q(s, a)) (1)

and we chose a hand-tuned discount factor γ = 0.98 and an
adaptive learning rate α(s) = 1/v(s), which is common in
literature [1], [16], where v(s) is the number of times the
learning agent has visited state s so far. If no human advice
is given, during learning the agent chooses actions according
to an ε-greedy policy with ε set to 0.1 for our experiments.

B. Classifiers for Individual Modalities

For MIA-IRL we assume base classifiers for each modality
mi that output a categorical distribution P (aH |mi) over all
possible actions aH . For the HRI experiments in this paper,

Algorithm 1 MIA-IRL

Require: max number of steps per episode M
1: init Q-table Q[s, a]=0 ∀s, a if a possible in s, else −∞
2: init visits per state v[s] = 0 ∀s
3: init discount factor γ and exploration rate ε
4: init episode counter e = 0
5: while Q not converged do
6: init steps per episode counter j = 0
7: s = random init state
8: while episode not finished and j < M do
9: v[s] = v[s] + 1

10: α = 1/v[s]
11: if human advice provided then
12: for modalities mi = m1,m2, ...,mD do
13: P (aH |mi) = ModalityClassifier(mi)
14: end for
15: P (aH |m1, ...,mD) =

FusionModule(P (aH |m1), ..., P (aH |mD), Q[s])
16: a = sample from distribution P (aH |m1, ...,mD)
17: else
18: a = choose ε-greedy action a from Q[s, a]
19: end if
20: execute action a, get reward r and next state s′

21: Q[s, a] = Q[s, a] + α(r+ γmaxa′Q[s′, a′]−Q[s, a])
22: s = s′

23: j = j + 1
24: end while
25: e = e+ 1
26: end while

we exemplarily used two classifiers for the modalities speech
and gestures. Since this work’s focus is on demonstrating the
benefits of applying the Bayesian fusion method IOP to IRL,
these classifiers are based on off-the-shelf existing approaches.
They can be straightforwardly replaced by other classifiers
that return categorical distributions. In particular, adding more
modalities is also possible from the mathematical formulations
of the fusion method in MIA-IRL.

1) Speech: In our experiments, we chose speech as one
of our modalities since it is mostly effortless and intuitive
for humans to use for communicating their intentions [28]. In
particular, we use keyword spotting where each keyword is
assigned to an action; e.g. ”milk” is the keyword for getting
some milk. We use the framework Honk [29], which returns
a categorical distribution over all keywords, also including
the categories ”silence” and ”unknown”. Honk is based on a
Convolutional Neural Network (CNN) with two convolutional
layers, one softmax layer, and Mel-Cepstrum Coefficient fea-
tures as input and is implemented in Pytorch. For training,
we recorded 10 keyword utterances per word from 13 people.
In addition to the 7 intended keywords (milk, flour, flower,
bowl, roll, shelf, pour) we also recorded some unknown words,
such as ”please” or ”give”, that are likely to be used if people
formulate their advice as a sentence. Also, noise and silence
sounds were used for training. An amount of 20% of the
training data for all keywords was added to the training set
from the unknown words, correspondingly also 30% from the
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silence recordings. With a probability of 0.8, noise was added
to training samples. 80% of all recorded data were taken for
training, 10% each for testing and validation. Since in our
experiments subjects were briefed to only use the defined
keywords, before fusing the speech classifier into MIA-IRL
we exclude the categories ”silence” and ”unknown” from the
output distribution and renormalize to obtain a categorical
distribution over all possible actions.

2) Gestures: Besides speech commands, humans also use
nonverbal cues to communicate intentions, in particular when
they refer to objects [30]. Therefore we also chose arm
gestures as an advice modality. The gestures are predefined,
namely pointing gestures for objects and a 2-arm symbolic
gesture for the action pour. Using an RGB-D camera (Intel
Realsense D435), the human skeleton is tracked based on
Openpose [31]. Missing skeleton frames are interpolated using
univariate splines. The tracked joint positions of arms and
shoulders are aligned with the neck joint and scaled to uniform
length in order to become invariant to the human-camera
distance. Since we assume a gesture duration of 1 second
with a skeleton tracking frame rate of 30Hz, the resulting
30 samples of respective upper body joint positions for a
gesture are transformed into a single vector as features for
classification. As a classification method we chose a multiclass
Support Vector Machine (SVM) with a polynomial kernel
of degree 2 (C=1, γ=0.1), implemented using the machine
learning framework Sklearn in Python. As class labels, we
provide the possible actions. The trained SVM does not
only return the predicted advised action but also provides a
categorical probability distribution as output.

C. Fusion Module

The categorical output distributions returned by the base
classifiers are fused using Independent Opinion Pool (IOP)
[10], [11]. IOP fuses D categorical probability distributions
P (aH |mi) over advised actions aH given modality data
mi, i = 1, . . . , D by multiplying them and renormalizing the
resulting vector to sum to 1 in order to obtain a categorical
distribution. Thus, the resulting fused distribution is

P (aH |m1, . . . ,mD) ∝
D∏
i=1

P (aH |mi). (2)

Assuming conditional independence of the categorical output
distributions P (aH |mi) returned by each modality’s classifier
and an uninformed prior P (aH) over actions aH , this fusion
method can be derived as probabilistically optimal by applying
Bayes’ rule. Its advantages are uncertainty reduction through
fusion and uncertainty-dependent fusion impact [11], [32].
If the categorical base distributions to be fused are non-
conflicting, the fused distribution is less uncertain than the
base distributions, i.e. its entropy is lower. If instead the base
distributions are conflicting, the resulting fused distribution’s
uncertainty is increased. Moreover, the less uncertain base
distribution has a higher impact on the fused distribution than
the more uncertain base distribution.

Since in the defined MDP some actions are impossible in
specific states, in addition to multiplying the base distributions

according to IOP, the fusion module additionally excludes
the probabilities of these impossible actions from the fused
distribution. Then the remaining probabilities are renormalized
to sum to 1. Algorithm 2 shows the complete functionality of
the proposed fusion module.

Algorithm 2 Fusion Module

Require: classifiers’ output distributions P (aH |mi), Q[s, :]
1: // multiply distributions
2: P (aH |m1, . . . ,mD) =

∏D
i=1 P (aH |mi)

3: // remove unavailable actions
4: for actions a = 0, 1, ... do
5: if Q[s, a] == −∞ then
6: remove entry P (aH |m1, . . . ,mD)[a]
7: end if
8: end for
9: renormalize P (aH |m1, . . . ,mD) to sum to 1

10: return P (aH |m1, . . . ,mD)

D. Action Selection Module

While the proposed fusion module outputs a categorical
probability distribution over all possible actions, the RL al-
gorithm requires a discrete action to be executed. If we just
chose the action with the highest probability, we would discard
valuable information about the decision’s uncertainty, which
we intentionally wanted to consider by using probabilistic
classifiers. Therefore, we propose sampling from the fused
categorical distribution P (aH |m1, . . . ,mD) to obtain a prob-
abilistically selected action âH to be executed by the RL agent.
If two actions’ probabilities are quite similar after fusion, by
sampling, each of them could be chosen to be executed instead
of only the one with the slightly higher probability. Thus, we
account for the system’s uncertainty about the human’s advice.
Also, this action selection allows additional exploration, which
is particularly helpful in case of imperfect base classifiers.

IV. EXPERIMENTAL EVALUATION

In this section, we present the results of the experimental
evaluation of our approach involving Bayesian fusion of mul-
timodal advice. In Section IV-A we show the main advantages
of our fusion method IOP in MIA-IRL in comparison to the
fusion method in the related approach C-IRL [9] on artificial
base distributions. Next, we compare the performances of
MIA-IRL, non-interactive RL, and C-IRL in a simulated grid
world environment (Section IV-B) and in an HRI task with a 7-
DoF robot arm and 10 human subjects (Section IV-C). For all
comparisons between MIA-IRL and C-IRL we replaced the
fusion module and the action selection module accordingly,
while using the same RL module and base classifiers.

A. Advantages of Bayesian Fusion

As mentioned in Section II, the fusion method proposed in
C-IRL [9] shares some desirable properties with our method
MIA-IRL such as uncertainty reduction and uncertainty-
dependent fusion impact. However, because C-IRL does not

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2022.3182100

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TRICK et al.: INTERACTIVE REINFORCEMENT LEARNING WITH BAYESIAN FUSION OF MULTIMODAL ADVICE 5

0.0

0.5

1.0
p

ro
b

a
b

il
it

y

(a)

d1 d2 MIA-IRL C-IRL

0.0

0.5

1.0

p
ro

b
a
b

il
it

y

(b)

0 1 2 3

class

0.0

0.5

1.0

p
ro

b
a
b

il
it

y

(c)

0 1 2 3

class

0 1 2 3

class

0 1 2 3

class

Fig. 2: Comparison of IOP in MIA-IRL and the fusion method
in C-IRL [9] on exemplary base distributions d1 and d2. C-
IRL disregards information by discarding all probabilities but
the highest one (a), returns no information about which class
to choose for conflicting distributions (b), or even chooses a
different class than Bayes optimal IOP (c).

consider the complete base classifier distributions, and discards
probabilities below heuristic thresholds, there exist particular
situations in which the IOP fusion, which we propose for MIA-
IRL, shows clear advantages. Three exemplary cases for such
situations are shown in Fig. 2. In Fig. 2(a) C-IRL reduces un-
certainty such as MIA-IRL but discards all probabilities apart
from the highest one. However, MIA-IRL, which is Bayes
optimal, assigns non-zero probabilities to all possible actions.
Therefore, C-IRL’s fusion method neglects the uncertainty that
should be reflected in the fused distribution. It would never
choose classes 0, 2, or 3, although there is a small probability
that one of these classes is the correct one. Fig. 2(b) shows
two conflicting base distributions. Fusion with IOP in MIA-
IRL results in a distribution that assigns the same probability
to classes 1 and 2. However, when fused with C-IRL all classes
have a probability of 0. Thus, C-IRL disregards the fact that
only classes 1 and 2 should be considered and classes 0 and
3 can be neglected. In Fig. 2(c), fusing two conflicting base
distributions, C-IRL would even choose a different action than
the one selected by Bayes optimal IOP in MIA-IRL. Most
likely, this would lead to a misclassification by C-IRL.

These three examples highlight the theoretical advantages
of the IOP fusion used in MIA-IRL compared to the fusion
method in C-IRL [9]. We argue here, that these advantages
lead to an increase in learning speed for IRL in particular
in cases, where base classifiers may partially output wrong
distributions, which we demonstrate in the following sections
for a simulated grid world and a real HRI task.

B. Grid World

We first evaluate MIA-IRL in a simulated 4× 4 grid world
environment (Fig. 3(a)) where an agent is supposed to reach a
goal while avoiding falling into one of two fires. If the agent
falls into a fire, the episode ends and the agent receives a
negative reward of −100. Otherwise, if the agent reaches the
goal marked by the green flag, it receives a positive reward

of 100. An episode may also end with a zero reward if the
number of required steps in one episode exceeds 15 steps.

We provide simulated advice in the form of two randomly
generated categorical distributions, which simulate two indi-
vidual modalities’ classifier outputs. This simulated advice is
given during the first 10 episodes of learning.

First, we simulate correct non-conflicting categorical distri-
butions as advice, i.e. we randomly generate two categorical
distributions in which the probability for the correct action
is always above 0.5. The resulting learning curves for non-
interactive Q-learning, C-IRL, and MIA-IRL are shown in
Fig. 3(b). Here, we plot the mean and standard deviation
for the reward per episode averaged over 50 repeated runs,
while for each episode we evaluate the policy 100 times
and average the obtained rewards. MIA-IRL (red) as well as
C-IRL (green) converge faster than standard non-interactive
Q-learning (blue). A Kruskal-Wallis-Test on the convergence
times of the three compared approaches showed a significant
difference (p<0.001). The Conover-Posthoc-Test additionally
provided evidence that MIA-IRL converges significantly faster
than standard Q-learning (p<0.001). However, the conver-
gence times of MIA-IRL and C-IRL do not differ signifi-
cantly. Thus, in the case of non-conflicting correct outputs
of both modalities’ individual classifiers human advice speeds
up learning compared to non-interactive RL, but the fusion
method, either C-IRL or IOP in MIA-IRL, does not signifi-
cantly influence the learning speed.

However, as real-world classifiers for human advice cannot
be assumed to be always correct, next we simulate a case
where one base classifier C1 always outputs a correct dis-
tribution while the second classifier C2 confuses the actions
”right” and ”left”. If the correct action is ”right”, for C2

a distribution with a probability above 0.5 for action ”left”
is randomly generated and vice versa. Fig. 3(c) shows that
in this case MIA-IRL (red) converges faster than both non-
interactive Q-learning (blue) and C-IRL (green). A Kruskal-
Wallis significance test showed a significant difference be-
tween the convergence times of the three compared approaches
(p<0.001). The Conover-Posthoc-Test revealed a significant
difference between MIA-IRL and non-interactive Q-learning,
C-IRL and non-interactive Q-learning, and MIA-IRL and C-
IRL (p<0.001). Accordingly, MIA-IRL is more robust against
partially incorrect classifier output in this case.

This effect is even stronger in a third simulated experiment,
where C2 is assumed to also confuse actions ”up” and ”down”
in addition to ”left” and ”right”, while C1 is still assumed cor-
rect. Fig. 3(d) shows the corresponding learning curves. The
convergence times of all approaches are significantly differ-
ent (Kruskal-Wallis-Test, p<0.001). According to a Conover-
Posthoc-Test, there is no significant difference between the
convergence times of non-interactive Q-learning and C-IRL
(p=0.34), but a significant difference between MIA-IRL and
non-interactive Q-learning (p<0.001) and MIA-IRL and C-
IRL (p<0.001).

If we further modify the third simulated experiment in a
way that in 20% of cases both classifiers fail, MIA-IRL still
outperforms C-IRL and Q-learning significantly (p<0.001), as
shown in Fig. 3(e). Also, since MIA-IRL is straightforwardly
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Fig. 3: Learning curves of non-interactive Q-learning, C-IRL [9], and MIA-IRL for the grid world in (a) with simulated advice
in the first 10 episodes. Mean rewards (lines) and standard deviations (shaded areas) over 50 runs are shown. In (b) both
classifiers C1 and C2 advise correct actions. (c) shows the results for a correct C1 and a C2 confusing actions ”right” and
”left”. In (d) C2 additionally confuses actions ”up” and ”down”, and in (e) in 20% of cases both classifiers fail. As (c) – (e)
show, MIA-IRL clearly outperforms C-IRL if the individual modalities’ classifiers partially fail. The additional curve in (e)
(MIA-IRL-3) shows how performance improves by including a third classifier to MIA-IRL.

Fig. 4: The experimental setup used for evaluating MIA-IRL.
A human is seated at a table to teach a 7-DoF robot arm
to prepare pancake batter. The robot’s task is to pour the
required ingredients milk (A) and flour (B) into a bowl (C).
Flowers (D) and a roll (E, not visible from shown perspective)
should not be picked by the robot. The human can give advice
by speech commands recorded with a microphone (1) and
gestures recorded by a depth camera (2).

extendable to more than two classifiers, we can easily add a
third classifier, which is correct in 60% of cases. MIA-IRL-
3 using 3 advice classifiers significantly outperforms MIA-
IRL and C-IRL with 2 classifiers (p<0.001). We expect that
adding more classifiers to MIA-IRL can further increase the
robustness of advice detection and by this the learning speed,
depending on the quality of individual classifiers.

We conclude from the simulated experiments that if indi-
vidual classifiers partially fail in detecting the correct human
advice, MIA-IRL clearly outperforms C-IRL.

C. Pancake Scenario
In addition to the simulated grid world scenario, we also

evaluated our approach in a real HRI scenario where human
subjects can advise a 7-DoF robot arm using speech and
gestures. Here, the goal of the task is that the robot should
learn to assist a human in preparing a pancake batter. The task
is solved successfully once the robot gets flour and milk from
a nearby shelf and pours them into a bowl. The state of the
robot is defined by the position of the arm, which can be AT-
BOWL or AT-SHELF, the current object in the robot’s hand

(or the hand being empty), the positions of the objects and the
current state of the bowl, which indicates if ingredients have
already been poured inside. In our experiments, the objects
flour, flower, and roll are always placed on the shelf, whereas
the position of the milk changes between the shelf and the
table between different episodes. In total, this results in 320
possible states. There are 7 actions, i.e. GO-SHELF, GET-
MILK, GET-FLOUR, GO-BOWL, POUR, GET-FLOWER,
GET-ROLL. The robot receives a reward of 100 if the task is
solved successfully and a negative reward of −100 in case of a
failure, which happens when the robot pours wrong ingredients
such as flowers or the roll into the bowl or if the robot tries
to get objects when already having another object in its hand.
The action POUR does not only include pouring the respective
ingredient into the bowl but also placing it close to the bowl
on the table afterward. If the maximum number of 20 steps per
episode is exceeded the episode ends with zero reward. Fig. 4
shows the full task setup. For each of the 7 actions, a speech
classifier is trained to recognize a corresponding keyword
and a gesture classifier to recognize a corresponding gesture.
Details on the classifiers used for the experiments of this paper
can be found in Section III-B1 and Section III-B2 respectively.
The experimental setup was designed in a particular way to
evaluate IRL in cases where classifiers may confuse intended
actions. For instance, some objects are placed close to each
other to cause similar pointing gestures, e.g. flour and flower,
as can be seen in Fig. 4. Moreover, we chose actions with
similar-sounding keywords, i.e. the keyword ”roll” to get a
roll (similar to ”bowl”) and the keyword ”flower” to get a
flower (similar to ”flour”).

In the described experimental setup, we conducted experi-
ments with 10 human participants (4 female, 6 male, 3 aged
18-25, 7 aged 26-35), who advised the robot in preparing
pancake batter.1 After a short briefing, during which the
participants got familiar with the required gestures and key-
words as well as the robot’s movements, they carried out two
experiment blocks, interrupted by a short break. In each block,
the participant gave advice over the first 20 episodes, using
gestures and speech commands. This choice of 20 episodes of
human advice was made after preliminary experiments, and is

1The experiments were approved by the ethics committee of TU Darmstadt
on September 21, 2021 (approval code EK44/2021).
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Fig. 5: Learning curves of non-interactive Q-learning, C-IRL [9], and MIA-IRL individually for all 10 participants of the
pancake experiment. Each plot is labeled with the respective participant’s code. Mean rewards (lines) and the corresponding
standard deviations (shaded areas) over 50 runs of learning with human advice given in the first 20 episodes are shown.

a trade-off between performance increase and time required
for each participant. In one of the blocks, MIA-IRL was used
for learning and in the other block, the related method C-IRL
[9] was applied. To eliminate sequence effects, 5 participants
started with MIA-IRL, 5 with C-IRL.

For each method, after the 20 initial episodes with human
advice, we let the RL agent finish the learning until conver-
gence of the average rewards per episode. Here, we average
over 50 individual runs of learning to cancel out randomness.
In each episode the learned policy is evaluated 100 times,
and the resulting learning curves are compared between MIA-
IRL and C-IRL. In addition, we also evaluated standard non-
interactive Q-learning as a baseline.

The individual resulting learning curves of all participants
for MIA-IRL, C-IRL, and non-interactive Q-learning are
shown in Fig. 5. For all participants MIA-IRL converges
faster than non-interactive Q-learning. For 4 participants MIA-
IRL and C-IRL perform similarly, while for the remaining
6 participants MIA-IRL outperforms C-IRL. The differences
between participants are caused by subject-dependent variation
of base classifier distributions. Particularly classifications of
flour are crucial since flour is necessary for success but
ambiguous for speech (similar sound flower) and pointing
gestures (located next to flower). For AKAW30, LTEI06,
OBMW01, and UNSK01, MIA-IRL and C-IRL perform simi-
larly, since for all of them one classifier detects flour accurately
and with high certainty while the other one is uncertain. Thus,
for both methods the certain base classifier is decisive, while
the fusion method, either MIA-IRL or C-IRL, has only little
impact. In contrast, e.g. for ITMB22, MIA-IRL performs best,
since the gesture classifier is uncertain between flour and
flower with flower more likely and the speech classifier is
even more uncertain with flour more likely. C-IRL favors the
more certain gesture classifier and thus fails often, while MIA-
IRL’s fusion more often correctly chooses flour. For ARGF01
C-IRL suddenly diverges, since it only learned to solve the
task from one of two starting states (milk on table). Thus, at
an average reward of 50 only MIA-IRL, which learned more
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Fig. 6: Learning curves of non-interactive Q-learning, C-
IRL [9], and MIA-IRL averaged over all 10 participants
of the pancake experiment. Both mean rewards (lines) and
the corresponding standard deviations (shaded areas) over 50
runs of all 10 participants are shown. MIA-IRL converges
significantly faster than standard Q-learning and C-IRL.

also for the other starting state, continues its steep increase.
The base classifiers’ output distributions here often match the
example in Fig. 2(b), where MIA-IRL outperforms C-IRL.

In addition to the learning curves of individual partici-
pants, Fig. 6 shows the mean learning curves over all 10
participants for MIA-IRL (red), C-IRL (green), and non-
interactive Q-learning (blue). MIA-IRL converges faster than
both C-IRL and standard Q-learning. The Mann-Whitney-U-
Test for independent samples showed a significant difference
between the convergence times of MIA-IRL and standard
Q-learning (p<0.001) and between C-IRL and standard Q-
learning (p<0.001). The Wilcoxon-Signed-Rank-Test for de-
pendent samples confirmed a significant difference between
the convergence times of MIA-IRL and C-IRL (p<0.001).
Thus, MIA-IRL clearly outperforms C-IRL also in real ex-
periments with human advisors and real classifiers. In par-
ticular, the experiments show again that MIA-IRL is more
robust against misclassifications of given human advice and
conflicting outputs of the individual modalities’ classifiers.
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V. CONCLUSION

In this work, we proposed MIA-IRL, a novel Interactive
Reinforcement Learning approach that enables humans to
advise a robot via multiple modalities, such as speech and
gestures. In contrast to previous work, we fuse the modalities’
classifiers’ output distributions with the method Independent
Opinion Pool, which can be derived as Bayes optimal and
explicitly considers the individual modalities’ uncertainties
correctly. Importantly, this also allows probabilistic action
selection through sampling from the resulting fused distri-
bution, instead of just choosing the most probable action,
and straightforward integration of more than two modalities.
In a simulated grid world scenario as well as in an HRI
experiment with human participants and a real robot we
showed that our approach clearly outperforms the closest
related state-of-the-art approach [9]. In particular, MIA-IRL
is more robust against misclassifications of the modalities’
individual classifiers. Thus, MIA-IRL lays an improved solid
foundation for future development of multimodal IRL.

For future work, we want to further exploit the uncertainty
represented by the fused distribution. For instance, one could
include an active request for additional information if the
given advice is too uncertain in order to reduce the risk
for catastrophic failures. Additionally, we plan to extend our
fusion method to explicitly consider potential correlations
between the base classifiers, evaluate MIA-IRL with additional
modalities such as gaze or facial expressions, and add an
additional module that learns and preserves human advice
over time to enable reusing the given advice during the entire
learning process. Since in the current form MIA-IRL is limited
to discrete tasks, extensions for continuous tasks are also
interesting to explore in future work.
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