C. Ott, I. Ibs, C. A. Rothkopf, F. Jaekel. A taxonomic view on human sequential decision-making: unveiling the relationship between tasks, [submitted]
I. Ibs, C. Ott, F. Jaekel, C. A. Rothkopf. From human explanations to Explainable AI: insights from constrained optimization, [submitted]
S. Trick, F. Jäkel, C. A. Rothkopf. Bayesian combination of correlated subjective probability estimates, [submitted]
D. Straub, C. A. Rothkopf. If it looks like online control, it is probably model-based control, Annual Meeting of the Cognitive Science Society, 2024.
[ (opens in new tab)], [ pdf] html
PsyArXiv, 2024 [] html
A. Boehm, T. Schneider, B. Belousov, A. Kshirsagar, L. Lin, K. Doerschner, K. Drewing, C. A Rothkopf, J. Peters. Tactile active texture recognition with vision-based tactile sensors, 1st workshop on touch processing: a new sensing modality for AI, Neurips Workshop, 2023.
[ (opens in new tab)], [ pdf], [ html] data
F. Eggenkemper, L. Kölker, M. Valente, C. A. Rothkopf, R. Mertens. Learning individualized automatic content magnification in gaze-based interaction, 25th IEEE International Symposium on Multimedia (ISM), 2023.
M. Raab, L. Voigt, C. Rothkopf, K. Fiehler. Studying naturalistic actions requires research programs and not trade-off decisions in individual studies. Commentary to Maselli, A. et al.: Beyond simple laboratory studies: Developing sophisticated models to study rich behavior, Physics of Life Reviews, (47)33-34, 2023.
[], [ pdf] html
F. Tatai, D. Straub, C. A. Rothkopf. People use Newtonian physics in intuitive sensorimotor decisions under risk, Annual Meeting of the Cognitive Science Society, 2023.
[ (opens in new tab)], [ pdf] html
F. Kadner, H. Willkomm, I. Ibs, C. A. Rothkopf. Finding your way out: planning strategies in human maze-solving behavior, Annual Meeting of the Cognitive Science Society, 2023.
[ (opens in new tab)], [ pdf] html
PsyArXiv, 2023 [] html
K. Hämmerl, B. Deiseroth, P. Schramowski, J. Libovicky, C. Rothkopf, A. Fraser, K. Kersting. Speaking multiple languages affects the moral bias of language models. Findings of the Association for Computational Linguistics (ACL), 2023.
[ (opens in new tab)], [ pdf] html
arXiv, 2022 https://arxiv.org/abs/2211.07733
F. Kadner, T. Thomas, D. Hoppe, C. A Rothkopf. Improving saliency models' predictions of the next fixation with humans' intrinsic cost of gaze shifts, IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023
[ (opens in new tab)], [ pdf] html
arXiv, 2022 [] html
S. Trick, C. A. Rothkopf. Bayesian classifier fusion with an explicit model of correlation, International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR 151:2282-2310, 2022
[ (opens in new tab)], [ pdf], [ html] code
arXiv, 2021 [] html
D. Koert, J. Pajarinen, A. Schotschneider, S. Trick, C. Rothkopf, J. Peters. Learning intention aware online adaptation of movement primitives. IEEE Robotics and Automation Letters (RA-L), with presentation at the IEEE International Conference on Intelligent Robots and Systems (IROS), 2019
[ (opens in new tab)] pdf
N. Araslanov, C. A. Rothkopf, S. Roth. Actor-critic instance segmentation. Conference on Computer Vision and Pattern Recognition (CVPR), 2019
(opens in new tab), [pdf] [html]
arXiv, 2019 [] html
D. Hoppe, S. Helfmann, C. A. Rothkopf. Humans quickly learn to blink strategically in response to environmental task demands. Proceedings of the National Academy of Sciences (PNAS), 2018
[ (opens in new tab)], [ pdf] html
V. S. R. Veeravasarapu, C. A. Rothkopf, V. Ramesh: 'Adversarially tuned scene generation', Conference on Computer Vision and Pattern Recognition (CVPR), 2017
[ (opens in new tab)], [ pdf] html
V. S. R. Veeravasarapu, C. A. Rothkopf, V. Ramesh: 'Model-driven simulations for computer vision', IEEE Winter Conference on Applications of Computer Vision (WACV), 2017
[ (opens in new tab)] pdf
B. Belousov, G. Neumann, C. A. Rothkopf, J. Peters: 'Catching heuristics are optimal control policies', Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), 2016
[ (opens in new tab)], [ pdf], [ html] code
C. A. Rothkopf, D. H. Ballard: 'Modular inverse reinforcement learning for visuomotor behavior', Biological Cybernetics, 107(4), 477-490, 2013 (opens in new tab) [pdf] [html]
D. H. Ballard, D. Kit, C. A. Rothkopf, B. Sullivan: 'A hierarchical modular architecture for embodied cognition', Multisensory Research, 26:(1-2), 177 – 204 (opens in new tab) [pdf] [html]
D. Pamplona, J. Triesch, C. A. Rothkopf: 'Power spectra of the natural input to the visual system', Vision Research, 83:66-75, 2013 (opens in new tab) [pdf] [html]
Y. Zhao, C. A. Rothkopf, J. Triesch, B. Shi: 'A unified model of the joint development of disparity selectivity and vergence control', IEEE 8th International Conference on Development and Learning, November 7-9, 2012 (Paper of Excellence award) (opens in new tab) [pdf] [html]
C. Dimitrakakis, C. A. Rothkopf: 'Bayesian multitask inverse reinforcement learning', European Workshop on Reinforcemnt Learning (EWRL), September 9–11, 2011 (opens in new tab) [pdf] [html]
C. A. Rothkopf, C. Dimitrakakis: 'Preference elicitation and inverse reinforcement learning', 22nd European Conference on Machine Learning (ECML), September 5-9, 2011 (opens in new tab) [pdf] [html]
H. Toutounji, C. A. Rothkopf, J. Triesch: 'Scalable reinforcement learning through hierarchical decompositions for weakly-coupled problems', IEEE 10th International Conference on Development and Learning (ICDL), August 24-27, 2011 (opens in new tab) [pdf] [html]
C. Karaoguz, T. H. Weisswange, T. Rodemann, B. Wrede, C. A. Rothkopf: 'Reward-based learning of optimal cue integration in audio and visual depth estimation', 15th International Conference on Advanced Robotics (ICAR), June 20-23, 2011 (opens in new tab) [pdf] [html]
J. Triesch, C. A. Rothkopf, T. H. Weisswange: 'Coordination in Sensory Integration', in Dynamic Coordination in the Brain: From Neurons to Mind, edited by C. von der Malsburg, W. A. Phillips, W. Singer, MIT Press 2010
T. H. Weisswange, C. A. Rothkopf, T. Rodemann, J. Triesch: 'Can reinforcement learning explain the development of causal inference in multisensory integration?', IEEE 8th International Conference on Development and Learning, June 5-7, 2009 (opens in new tab) [pdf] [html]
C. A. Rothkopf, T. H. Weisswange, J. Triesch: 'Learning independent causes in natural images explains the spacevariant oblique effect', IEEE 8th International Conference on Development and Learning, June 5-7, 2009 (opens in new tab) [pdf] [html]
C. A. Rothkopf, D. H. Ballard: 'Image statistics at the point of gaze during human navigation', Visual Neuroscience, special issue on 'Natural Systems Analysis', 26, 81–92, 2009 (opens in new tab) [pdf] [html]
C. A. Rothkopf: 'Modular models of task based visually guided behavior', Ph. D. thesis, University of Rochester. Department of Brain and Cognitive Sciences, Department of Computer Science, 2008
J. B. Pelz, C. Rothkopf: 'Oculomotor behavior while navigating natural and man-made environments' in 'Eye movements: A window on mind and brain', Editors: R. van Gompel, M. Fischer, W. Murray, R. Hill. Elsevier Press, 2007
J. F. M. Jehee, C. A. Rothkopf, J. M. Beck, D. H. Ballard: 'Learning receptive fields using predictive feedback', Journal of Physiology Paris, 100, 125-132, 2006 (opens in new tab) [pdf] [html]
R. D. Meyer, E. P. Horch, Z. Ninkov, W.F. van Altena, C.A. Rothkopf: 'RYTSI: the Rit-Yale-Tip-Tilt-Speckle-Imager', Publications of the Astronomical Society of the Pacific, 118 , 162-171, 2006 (opens in new tab) [pdf] [html]
C. A. Rothkopf, J. B. Pelz: 'Head movement estimation for wearable eye tracker', Proceedings of the Eye Tracking Research & Application Symposium, ETRA 2004, San Antonio, Texas, USA, ACM, 2004 (opens in new tab) [pdf] [html]
Additional resources
C. A. Rothkopf. Three levels of description by David Marr slides
[ (opens in new tab)
] pdf