Trick, S., Lott, V., Scherf, L., Rothkopf, C. A., Koert, D. What can I help you with: towards task-independent detection of intentions for interaction in a human-robot environment. IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), [accepted].

F. Tatai, D. Straub, C. A. Rothkopf. People use Newtonian physics in intuitive sensorimotor decisions under risk, Annual Meeting of the Cognitive Science Society, [accepted].

F. Kadner, T. Thomas, D. Hoppe, C. A Rothkopf. Improving saliency models' predictions of the next fixation with humans' intrinsic cost of gaze shifts, IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023
[ (opens in new tab)], [ pdf] html
arXiv, 2022 [] html

S. Trick, C. A. Rothkopf. Bayesian classifier fusion with an explicit model of correlation, International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR 151:2282-2310, 2022
[ (opens in new tab)], [ pdf], [ html] code
arXiv, 2021 [] html

S. Trick, D. Koert, J. Peters, C. Rothkopf. Multimodal uncertainty reduction for intention recognition in human-robot interaction. International Conference on Intelligent Robots and Systems (IROS), 2019
[ (opens in new tab)] pdf

D. Koert, J. Pajarinen, A. Schotschneider, S. Trick, C. Rothkopf, J. Peters. Learning intention aware online adaptation of movement primitives. IEEE Robotics and Automation Letters (RA-L), with presentation at the IEEE International Conference on Intelligent Robots and Systems (IROS), 2019
[ (opens in new tab)] pdf

N. Araslanov, C. A. Rothkopf, S. Roth. Actor-critic instance segmentation. Conference on Computer Vision and Pattern Recognition (CVPR), 2019
(opens in new tab), [pdf] [html]
arXiv, 2019 [] html

D. Hoppe, S. Helfmann, C. A. Rothkopf. Humans quickly learn to blink strategically in response to environmental task demands. Proceedings of the National Academy of Sciences (PNAS), 2018
[ (opens in new tab)], [ pdf] html

V. S. R. Veeravasarapu, C. A. Rothkopf, V. Ramesh: 'Adversarially tuned scene generation', Conference on Computer Vision and Pattern Recognition (CVPR), 2017
[ (opens in new tab)], [ pdf] html

V. S. R. Veeravasarapu, C. A. Rothkopf, V. Ramesh: 'Model-driven simulations for computer vision', IEEE Winter Conference on Applications of Computer Vision (WACV), 2017
[ (opens in new tab)] pdf

B. Belousov, G. Neumann, C. A. Rothkopf, J. Peters: 'Catching heuristics are optimal control policies', Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), 2016
[ (opens in new tab)], [ pdf], [ html] code

C. A. Rothkopf, D. H. Ballard: 'Modular inverse reinforcement learning for visuomotor behavior', Biological Cybernetics, 107(4), 477-490, 2013 (opens in new tab) [pdf] [html]

D. H. Ballard, D. Kit, C. A. Rothkopf, B. Sullivan: 'A hierarchical modular architecture for embodied cognition', Multisensory Research, 26:(1-2), 177 – 204 (opens in new tab) [pdf] [html]

D. Pamplona, J. Triesch, C. A. Rothkopf: 'Power spectra of the natural input to the visual system', Vision Research, 83:66-75, 2013 (opens in new tab) [pdf] [html]

Y. Zhao, C. A. Rothkopf, J. Triesch, B. Shi: 'A unified model of the joint development of disparity selectivity and vergence control', IEEE 8th International Conference on Development and Learning, November 7-9, 2012 (Paper of Excellence award) (opens in new tab) [pdf] [html]

C. Dimitrakakis, C. A. Rothkopf: 'Bayesian multitask inverse reinforcement learning', European Workshop on Reinforcemnt Learning (EWRL), September 9–11, 2011 (opens in new tab) [pdf] [html]

C. A. Rothkopf, C. Dimitrakakis: 'Preference elicitation and inverse reinforcement learning', 22nd European Conference on Machine Learning (ECML), September 5-9, 2011 (opens in new tab) [pdf] [html]

H. Toutounji, C. A. Rothkopf, J. Triesch: 'Scalable reinforcement learning through hierarchical decompositions for weakly-coupled problems', IEEE 10th International Conference on Development and Learning (ICDL), August 24-27, 2011 (opens in new tab) [pdf] [html]

C. Karaoguz, T. H. Weisswange, T. Rodemann, B. Wrede, C. A. Rothkopf: 'Reward-based learning of optimal cue integration in audio and visual depth estimation', 15th International Conference on Advanced Robotics (ICAR), June 20-23, 2011 (opens in new tab) [pdf] [html]

J. Triesch, C. A. Rothkopf, T. H. Weisswange: 'Coordination in Sensory Integration', in Dynamic Coordination in the Brain: From Neurons to Mind, edited by C. von der Malsburg, W. A. Phillips, W. Singer, MIT Press 2010

M. M. Hayhoe, C. A. Rothkopf: 'Vision in the natural world', Wiley Interdisciplinary Reviews: Cognitive Science, Wiley, 2010 (opens in new tab) [pdf], [ [html]] image

C. A. Rothkopf, T. H. Weisswange, J. Triesch: 'Computational modeling of multisensory object perception', in 'Multisensory Object Perception in the Primate Brain', Editors: M. J. Naumer & J. Kaiser, New York: Springer, 2010 (opens in new tab) [pdf manuscript]

T. H. Weisswange, C. A. Rothkopf, T. Rodemann, J. Triesch: 'Can reinforcement learning explain the development of causal inference in multisensory integration?', IEEE 8th International Conference on Development and Learning, June 5-7, 2009 (opens in new tab) [pdf] [html]

C. A. Rothkopf, T. H. Weisswange, J. Triesch: 'Learning independent causes in natural images explains the spacevariant oblique effect', IEEE 8th International Conference on Development and Learning, June 5-7, 2009 (opens in new tab) [pdf] [html]

C. A. Rothkopf, D. H. Ballard: 'Image statistics at the point of gaze during human navigation', Visual Neuroscience, special issue on 'Natural Systems Analysis', 26, 81–92, 2009 (opens in new tab) [pdf] [html]

C. A. Rothkopf: 'Modular models of task based visually guided behavior', Ph. D. thesis, University of Rochester. Department of Brain and Cognitive Sciences, Department of Computer Science, 2008

J. B. Pelz, C. Rothkopf: 'Oculomotor behavior while navigating natural and man-made environments' in 'Eye movements: A window on mind and brain', Editors: R. van Gompel, M. Fischer, W. Murray, R. Hill. Elsevier Press, 2007

J. F. M. Jehee, C. A. Rothkopf, J. M. Beck, D. H. Ballard: 'Learning receptive fields using predictive feedback', Journal of Physiology Paris, 100, 125-132, 2006 (opens in new tab) [pdf] [html]

R. D. Meyer, E. P. Horch, Z. Ninkov, W.F. van Altena, C.A. Rothkopf: 'RYTSI: the Rit-Yale-Tip-Tilt-Speckle-Imager', Publications of the Astronomical Society of the Pacific, 118 , 162-171, 2006 (opens in new tab) [pdf] [html]

C. A. Rothkopf, J. B. Pelz: 'Head movement estimation for wearable eye tracker', Proceedings of the Eye Tracking Research & Application Symposium, ETRA 2004, San Antonio, Texas, USA, ACM, 2004 (opens in new tab) [pdf] [html]

Additional resources
C. A. Rothkopf. Three levels of description by David Marr slides
[ (opens in new tab)
] pdf
